BACKGROUND

Depth-aware video panoptic segmentation (DVPS) combines segmentation, depth estimation, and object tracking in video. Such information has a critical role in autonomous driving and robotics applications.

Current approaches share information across tasks either explicitly, *i.e.* modeling interactions between task-specific embeddings [4, 5], or implicitly through a shared object representation [2].

We propose Multiformer, a hybrid architecture that combines task-specific and shared object representations ('queries'). Furthermore, we show that this architecture can be extended with metric depth estimation. Finally, a design space exploration on various query decoder designs is provided.

KEY COMPONENTS

- Mask transformer model with masked-attention [1] extended to depth estimation and tracking.
- Branched decoder block with task-specific query refinement branches.
- Context adapter that seeds the initial (shared) queries.
- **Depth head** that directly estimates metric depth without min-max denormalization.

DATASETS & TRAINING

Name	Train videos (frames)	Val. videos (frames)	Annotations
Cityscapes-DVPS [4]	400 (12,000)	50 (1,500)	Every 5th frame
SemKITTI-DVPS [4]	10 (19,130)	1 (4,071)	Sparse reprojected

Models were trained on **4 NVIDIA H100 GPUs** for **20K steps** in **batches of 32 annotated images**. Furthermore, the AdamW optimizer was adopted, having 0.0005 peak learning rate in a polynomial decay schedule. Additionally, random color jitter and horizontal flip augmentations were applied.

MAIN RESULTS

Method	Backhone		DVPQ ↑[%]			Depth error \downarrow	
	Dackbone	All	Thing	Stuff	Abs.Rel.	RMSE	
ViP-DeepLab [4]	ResNet-50	42.0	27.6	51.5	0.070	3.67	
MonoDVPS [3]	ResNet-50	48.8	31.0	61.7	0.070	3.67	
PolyphonicFormer [5]	ResNet-50	48.1	35.6	57.1	0.081	4.01	
UniDVPS [2]	ResNet-50	51.8	37.1	62.5	0.067	3.88	
Multiformer (ours)	ResNet-50	54.8	37.4	67.4	0.066	3.35	
PolyphonicFormer [5]	Swin-B	55.4	43.3	63.6	0.065	3.80	
Multiformer (ours)	Swin-B	59.4	46.0	69.2	0.048	2.81	

State-of-the-art performance on Cityscapes-DVPS [4], surpassing previous methods by 3.0 (ResNet-50) and 4.0 (Swin-B) depth-aware video panoptic quality (DVPQ) %-points and improving depth estimation accuracy. Measured using Multiformer with $N_{\rm B} = 9$ decoder blocks (large).

CONCLUSION & IMPACT

- Hybrid architecture. Introduces a hybrid decoder that effectively balances shared and task-specific representations through a *context adapter* that produces initial queries from task-specific image features and using a branched decoder block that enables task-specific decoding while maintaining a shared representation between blocks.
- Metric depth estimation. Incorporates an innovative depth estimation head that eliminates the datasetspecific depth hyper-parameters and improves accuracy.
- Design insights. Provides valuable insights into multi-task decoder architectures, demonstrating the benefits of task-specific branching with shared interfaces for complex vision tasks.

REFERENCES

- 1] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-attention mask transformer for universal image segmentation. In CVPR, pages 1290-1299, 2022.
- [2] Kim Ji-Yeon, Oh Hyun-Bin, Kwon Byung-Ki, Dahun Kim, Yongjin Kwon, and Tae-Hyun Oh. UniDVPS: Unified model for depth-aware video panoptic segmentation. IEEE Robotics and Automation Letters, pages 1-8, 2024. [3] Andra Petrovai and Sergiu Nedevschi. MonoDVPS: A self-supervised monocular depth estimation approach to depth-aware video panoptic segmenta
- tion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 3077-3086, 2023. [4] Siyuan Qiao, Yukun Zhu, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen. ViP-DeepLab: Learning visual perception with depth-aware video panoptic
- segmentation. In CVPR, 2020. [5] Haobo Yuan, Xiangtai Li, Yibo Yang, Guangliang Cheng, Jing Zhang, Yunhai Tong, Lefei Zhang, and Dacheng Tao. PolyphonicFormer: Unified query learning for depth-aware video panoptic segmentation. In ECCV, 2022.

Balancing Shared and Task-Specific Representations: A Hybrid Approach to Depth-Aware Video Panoptic Segmentation

- 1. Learnable queries are split into task-specific branches through a learnable linear transform.
- 2. Each branch incorporates task-specific nuances via maskedattention, self-attention and a feed-forward layer.
- 3. Task-specific queries are fused at the interface between blocks via a linear transform and normalization.

DECODER BLOCK DESIGN SPACE

Exploration of various decoder block designs on the overall depth-aware video panoptic quality (DVPQ) on Cityscapes-DVPS [4] with $N_{\rm B} = 3$ blocks.

Produces the initial (shared) queries $oldsymbol{Q}_0$ from a set of learnable queries $oldsymbol{Q}_\ell$ and a compressed representation of the task-specific image features

Ablation	PQ	VPQ	DVPQ
Passthrough ($Q_0 = Q_\ell$)	65.1	57.1	52.3
	05.2	57.5	52.7

Evaluated on Cityscapes-DVPS with $N_{\rm B} = 3$ (small).

Depth-aware video panoptic quality on SemKITTI-DVPS [4] for varying window size (κ) and depth threshold (λ) using $N_B = 9$ decoder blocks (large). The proposed method achieves state-of-the-art performance, and exhibits less DVPQ degradation at larger window sizes than previous methods.

CODE & MODELS

research.khws.io/multiformer

CONTACT

 $\times N_B$

Kurt H.W. Stolle kurt@computer.org

