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BACKGROUND

Depth-aware video panoptic segmentation (DVPS) combines segmentation, depth estimation, and object
tracking in video. Such information has a critical role in autonomous driving and robotics applications.

Current approaches share information across tasks either explicitly, i.e. modeling interactions between
task-specific embeddings [4, 5], or implicitly through a shared object representation [2].

We proposeMultiformer, a hybrid architecture that combines task-specific and shared object representa-
tions (‘queries‘). Furthermore, we show that this architecture can be extended with metric depth estimation.
Finally, a design space exploration on various query decoder designs is provided.

KEY COMPONENTS

•Mask transformer model with masked-attention [1] extended to depth estimation and tracking.

•Branched decoder block with task-specific query refinement branches.

•Context adapter that seeds the initial (shared) queries.

•Depth head that directly estimates metric depth without min-max denormalization.

DATASETS & TRAINING

Name Train videos (frames) Val. videos (frames) Annotations

Cityscapes-DVPS [4] 400 (12,000) 50 (1,500) Every 5th frame
SemKITTI-DVPS [4] 10 (19,130) 1 (4,071) Sparse reprojected

Modelswere trainedon4NVIDIAH100GPUs for20K steps inbatches of 32 annotated images. Furthermore,
the AdamW optimizer was adopted, having 0.0005 peak learning rate in a polynomial decay schedule.
Additionally, random color jitter and horizontal flip augmentations were applied.

MAIN RESULTS

Method Backbone
DVPQ ↑ [%] Depth error ↓

All Thing Stuff Abs.Rel. RMSE

ViP-DeepLab [4] ResNet-50 42.0 27.6 51.5 0.070 3.67
MonoDVPS [3] ResNet-50 48.8 31.0 61.7 0.070 3.67
PolyphonicFormer [5] ResNet-50 48.1 35.6 57.1 0.081 4.01
UniDVPS [2] ResNet-50 51.8 37.1 62.5 0.067 3.88
Multiformer (ours) ResNet-50 54.8 37.4 67.4 0.066 3.35

PolyphonicFormer [5] Swin-B 55.4 43.3 63.6 0.065 3.80
Multiformer (ours) Swin-B 59.4 46.0 69.2 0.048 2.81

State-of-the-art performance on Cityscapes-DVPS [4], surpassing previous methods by 3.0 (ResNet-50)
and 4.0 (Swin-B) depth-aware video panoptic quality (DVPQ) %-points and improving depth estimation
accuracy. Measured using Multiformer with NB = 9 decoder blocks (large).

CONCLUSION & IMPACT

•Hybrid architecture. Introduces a hybrid decoder that effectively balances shared and task-specific
representations through a context adapter that produces initial queries from task-specific image features
and using a branched decoder block that enables task-specific decoding while maintaining a shared
representation between blocks.

•Metric depth estimation. Incorporates an innovative depth estimation head that eliminates the dataset-
specific depth hyper-parameters and improves accuracy.

•Design insights. Provides valuable insights into multi-task decoder architectures, demonstrating the
benefits of task-specific branching with shared interfaces for complex vision tasks.
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1. Learnable queries are split into task-specific branches through a
learnable linear transform.

2.Each branch incorporates task-specific nuances via masked-
attention, self-attention and a feed-forward layer.

3.Task-specific queries are fused at the interface between blocks
via a linear transform and normalization.

MONOCULAR DEPTH ESTIMATION
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Min-max denormalization head [4, 5, 2] Abs.Rel ↓ RMSE ↓ Direct metric depth head (ours) Abs.Rel ↓ RMSE ↓
Multiformer (large) 0.069 3.54 Multiformer (large) 0.066 3.35
−Weighted merge 0.073 3.74 −Weighted merge 0.076 3.81
− Context adapter 0.074 3.84 − Context adapter 0.078 3.86

DECODER BLOCK DESIGN SPACE

Exploration of various decoder block designs on the overall depth-aware video panoptic quality (DVPQ) on Cityscapes-DVPS [4] with NB = 3 blocks.
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Separated design Concatenated design Unified design Sequential design Hybrid design (ours)
DVPQ = 45.7 (NP = 17.8M) DVPQ = 51.2 (NP = 19.8M) DVPQ = 52.3 (NP = 17.6M) DVPQ = 52.4 (NP = 18.2M) DVPQ = 52.7 (NP = 18.0M)

This publication is part of the NEON project with file number 17628 of the Crossover research program, which is (partly) financed by the Dutch Research Council (NWO). The Dutch national compute infrastructure was used with the support of the SURF Cooperative using grant EINF-5438.

MODEL SCALING

The proposed model is scaled
through the amount of decoder
blocks NB.
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Ablation PQ VPQ DVPQ

Passthrough (Q0 = Q`) 65.1 57.1 52.3
Context adapter 65.2 57.5 52.7

Evaluated on Cityscapes-DVPS with NB = 3 (small).
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Method Backbone DVPQλ
κ κ=1 κ=5 κ=10 κ=20 Avg.

ViP-DeepLab WR-50 48.9 45.8 44.4 43.4 45.6

PolyphonicFormer [5] Swin-B λ=0.50 58.5 52.0 50.6 49.9 52.8
λ=0.25 56.3 49.7 48.4 47.7 50.5
λ=0.10 41.8 35.1 33.7 33.0 35.9
Avg. 52.2 45.6 44.2 43.4 46.4

Multiformer (ours) Swin-B λ=0.50 56.6 55.2 54.6 49.6 54.0
λ=0.25 51.4 49.6 49.5 48.5 49.7
λ=0.10 49.1 47.2 46.6 46.2 47.3
Avg. 52.3 50.6 50.2 48.2 50.3

Depth-aware video panoptic quality on SemKITTI-DVPS [4] for varying window size
(κ) and depth threshold (λ) using NB = 9 decoder blocks (large). The proposed
method achieves state-of-the-art performance, and exhibits less DVPQ degrada-
tion at larger window sizes than previous methods.

CODE & MODELS

research.khws.io/multiformer

CONTACT

Kurt H.W. Stolle
kurt@computer.org


